skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sullivan, Garrett"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rift initiation within cold, thick, strong lithosphere and the evolving linkage to form a contiguous plate boundary remains debated in part owing to the lack of time–space constraints on kinematics of basement‐involved faults. Different rift sectors initiate diachronously and may eventually link to produce a jigsaw spatial pattern, as in the East African rift, and along the Atlantic Ocean margins. The space–time distribution of earthquakes illuminates the geometry and kinematics of fault zones within the crystalline crust, as well as areas with pressurized magma bodies. We use seismicity and Global Navigation System Satellites (GNSS) data from the Turkana Rift Array Investigating Lithospheric Structure (TRAILS) project in East Africa and a new digital compilation of faults and eruptive centres to evaluate models for the kinematic linkage of two initially separate rift sectors: the Main Ethiopian Rift (MER) and the Eastern rift (ER). The ca. 300 km wide zone of linkage includes failed basins and linkage zones; seismicity outlines active structures. Models of GNSS data indicate that the ca. 250 km‐wide zone of seismically active en echelon basins north of the Turkana Depression is a zone, or block, of distributed strain with small counterclockwise rotation that serves to connect the Main Ethiopian and Eastern rifts. Its western boundary is poorly defined owing to data gaps in South Sudan. Strain across the northern and southern boundaries of this block, and an ca. 50 km‐wide kink in the southern Turkana rift is accommodated by en echelon normal faults linked by short strike‐slip faults in crystalline basement, and relay ramps at the surface. Short segments of obliquely oriented basement structures facilitate across‐rift linkage of faults, but basement shear zones and Mesozoic rift faults are not actively straining. This configuration has existed for at least 2–5 My without the development of localized shear zones or transform faults, documenting the importance of distributed deformation in continental rift tectonics. 
    more » « less
  2. There have been conflicting findings on the degree to which rapidly deployed visual attention is selective for depth, and this issue has important implications for attention models. Previous findings have attempted to find depth-based cueing effects on such attention using reaction time (RT) measures for stimuli presented in stereo goggles with a display screen. Results stemming from such approaches have been mixed, depending on whether target/distractor discrimination was required. To help clarify the existence of such depth effects, we have developed a paradigm that measures accuracy rather than RT in an immersive virtual-reality environment, providing a more appropriate context of depth. Three modified Posner Cueing paradigms were run to test for depth-specific rapid attentional selectivity. Participants fixated a cross while attempting to identify a rapidly masked black letter preceded by a red cue that could be valid in depth, side, or both. In Experiment 1a, a potent cueing effect was found for lateral cueing validity, but a weak effect was found for depth despite an extreme difference in virtual depth (1 vs. 300 m). In Experiment 1b, a near-replication of 1a, the lateral effect replicated while the depth effect did not. Finally, in Experiment 2, to increase the depth cue’s effectiveness, the letter matched the cue’s color, and the presentation duration was increased; however, again only a minimal depth-based cueing effect – no greater than that of Experiment 1a – was observed. Thus, we conclude that rapidly deployed attention is driven largely by spatiotopic rather than depth-based information. 
    more » « less